oi gente... mais algumas questões de matemática pra ajudar a vcs... valeu... então vamos la....


Denominando x a minha idade atual, a partir do enunciado podemos montar a seguinte equação:
x2 - (x - 20) = 2000
Ou ainda:

A solução desta equação do 2° grau completa nós dará a resposta deste problema. Vejamos:

As raízes reais da equação são -44 e 45. Como eu não posso ter -44 anos, é óbvio que só posso ter 45 anos. Logo:
Agora eu tenho 45 anos.

O enunciado nos diz que os dois tipos de lanche têm o mesmo valor unitário. Vamos denominá-lo então de x.
Ainda segundo o enunciado, de um dos produtos eu comprei 4 unidades e do outro eu comprei x unidades.
Sabendo-se que recebi R$ 8,00 de troco ao pagar R$ 200,00 pela mercadoria, temos as informações necessárias para montarmos a seguinte equação:
4 . x + x . x + 8 = 200
Ou então:

Como x representa o valor unitário de cada lanche, vamos solucionar a equação para descobrimos que valor é este:

As raízes reais da equação são -16 e 12. Como o preço não pode ser negativo, a raiz igual -16 deve ser descartada. Assim:
O preço unitário de cada produto é de R$ 12,00.

Se chamarmos de x a idade de Pedro, teremos que x - 5 será a idade de Paulo. Como o produto das idades é igual a 374, temos que x . (x - 5) = 374.
Esta sentença matemática também pode ser expressa como:

Primeiramente para obtermos a idade de Pedro, vamos solucionar a equação:

As raízes reais encontradas são -17 e 22, por ser negativa, a raiz -17 deve ser descartada. Logo a idade de Pedro é de 22 anos.
Como Pedro é 5 anos mais velho que Paulo, Paulo tem então 17 anos. Logo:
Pedro tem 22 anos e Paulo tem 17 anos.

Em notação matemática, definindo a incógnita como x, podemos escrever esta sentença da seguinte forma:
3x2 = 15x
Ou ainda como:
3x2 - 15x = 0
A fórmula geral de resolução ou fórmula de Bhaskara, pode ser utilizada na resolução desta equação, mas por se tratar de uma equação incompleta, podemos solucioná-la de uma outra forma.
Como apenas o coeficiente c é igual a zero, sabemos que esta equação possui duas raízes reais. Uma é igual azero e a outra é dada pelo oposto do coeficiente b dividido pelo coeficiente a. Resumindo podemos dizer que:
Temos então:
Assim sendo:
Os dois números são 0 e 5.



 postado pelo Sr. presidente do fundão

This entry was posted on quarta-feira, 6 de junho de 2012. You can follow any responses to this entry through the RSS 2.0. You can leave a response.

Leave a Reply

Tecnologia do Blogger.